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Foreword

Why a mémoire on Dessins d’Enfants?

Dessins d’enfants form a relatively new area of research in Mathematics
but are far from being totally mastered. Their richness lies in their vari-
ous interconnections with other areas such as topology, algebraic geometry,
groups,complex analysis or even mathematical physics. A lot of articles
have already been published around the subject but, alas, just three books
([15],]21] and [16]) - that are nothing more than collections of articles - are
available.

The aim I set myself was to make a short introduction open to all people
that would be interested in the subject. I tried to make it as much self
contained as possible so that no important requirements in the pre-cited
topics are necessary.

Hoping you’ll discover a nice subject and enjoy it as I did, have a good
read.

Jimmy
Warwick, May 2000
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Part 1

The different faces of dessins

d’enfants.



CHAPTER 1

Definition of Dessins d’Enfants

1.1. Heuristic presentation

Dessins d’enfants have been introduced by Grothendieck in order to give
a new point of view to the study of Gal(Q/Q) and generally algebraic geo-
metry. The aim of this new point of view was a new attack of the subject
without any advanced background necessary. As he writes it in his esquisse
d’un programme in 1984 (part of his application to the CNRS) the simplicity
of these objects are really far from the deepness of the results that could be
hoped to be found.

“Je ne crois pas qu’un fait mathématique m’ait jamais autant
frappé que celui-la, et ait eu un impact psychologique com-
parable. Cela tient sirement a la nature tellement familiére,
non technique, des objets considérés, dont tout dessin d’enfant
griffoné sur un bout de papier (...) donne un exemple par-

faitement explicite”

Alexandre Grothendieck, Esquisse d'un Programme 1984!

Indeed, in a plane dessins d’enfants or children drawings can be seen as the

result of the next construction.

1. Draw in the plane points of two types
2. Join the points with the condition that two points of the same type

can’t be connected and lines can’t cross each other.

This can give us results like the following that are nothing else than what a

kid could just paint?.

14T don’t believe that any other mathematical fact impressed me so much and had such
a psychological influence. It certainly holds in the so familiar nature, un-technical, of the
considered objects whose image could be given by a child’s drawing on a piece of paper.”
2compare with cover ...
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NoTE. In the literature these occurences will often be denoted as “petit
bonhomme” and “Leila’s flowers”. 1t is this simplistic idea of this objects
that ’shocked’ Grothendieck so deeply.

Based on a important theorem of Belyi, Grothendieck will associate the
combinatorial properties of our drawings to much more advanced items that
are coverings.

So, let us dive into the deep world of dessins d’enfants.

1.2. Definitions.

However it is nice to work in the plane, the natural environment of dessins
will be the world of compact surfaces and dessins will be ’graph-theoretically’
defined.

DEFINITION 1.2.1. A Grothendieck dessin is a triple Xg C X1 C X
where X3 is the topological model of a connected compact Riemann surface,
Xy is a finite set of points and X7 \ Xy is a finite disjoint union of open
segments, X5\ X is a finite disjoint union of open cells, such that a bipartite
structure can be put on the set of vertices. That is, vertices can be coloured
with two different marks in such a way that direct neighbours are from the
opposite marks.



1.2. DEFINITIONS. 10

ExaMPLE 1.2.2. ({0, 3,1, 00}, [0, 00], P'C) is an alternated linear tree of
length 3 on the Riemann sphere.

inf

It is true this first definition already gives a more precise idea of a dessin
but the interesting parts of a dessin are its combinatorial properties, not
the way it is embedded. We must so define a class of equivalence between
dessins.

DEFINITION 1.2.3. An abstract dessin is an isomorphism class of Grothen-
dieck dessins under the relation : two dessins (Xg, X1, X2); (XU, Xl,XQ) are
isomorphic if there’s a homeomorphism X; — )2'2 that induces a homeo-
phormism X; — X'l and Xg — XU.

EXAMPLE 1.2.4. The dessin in the previous example is in the same iso-
morphism class as the dessin ({0, 1,2, oo}, [0, 0c], P!C). The homeomorphism
used here is the homotethy ¢ P'C — P'C : z > 22.

Another classification of dessin we will also need later is the notion of
3

pre-clean dessin®.

DEFINITION 1.2.5. A pre-clean Grothendieck dessin is a triple Xy C
X1 C X9 where X5 is the topological model of a connected compact Riemann
surface, Xy is a finite set of points and X; \ Xj is a finite disjoint union of

open segments, X5 \ X7 is a finite disjoint union of open cells.

REMARK. This definition of pre-clean Grothendieck dessin seems weaker
than Grothendieck dessin. In fact, in is the opposite. With a pre-clean dessin
we must (unconsciously) associate to each of its edges a point of a second
type of marking. So every point of the second mark has degree two. It is thus

®People as Schneps or Zaponi use the term pre-clean while others like Granboulan use the
term clean.
*Some will have recognized the definition of cellular graph.
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clear that this definition is more restrictive. We will thus also call pre-clean

dessin a dessin where the elements of one mark have degree two or less.’

One can remark that to each dessin can be associated a pre-clean dessin
by ’freezing’ (=identifying) its marks and then to each edge associate a

second-type vertex. We could of course also ’triple’ or 'quadruple’ a dessin.

EXAMPLE 1.2.6. Dubbling of the Petit Bonhomme.

The evolutions are :

e original dessin
e freezing of marks

e new dessin

We have now introduced the main definition of dessin d’enfant. It is the
simplest and it permits us to draw dessins in a very intuitive way. But this
defition is equivalent to several others. Many of those were already known a
'long’ time ago. Before going further it will be interesting to take a look at
the other faces of dessins d’enfants...

5If we prefer to use the terminology pre-clean it is because we can so hold the term clean
for dessins where vertices of type 2 have exactly degree 2.



CHAPTER 2

The other faces of dessins d’enfants.

From now on we will implicitly work on oriented surfaces - still compact.

2.1. Triangulations.

DEFINITION 2.1.1. A triangulation is a cellular graph Xy, X1, X9 where
each open cell is planar bounded by exactly three edges.

EXAMPLE 2.1.2. A triangulation of the torus and the smallest triangu-

lation of a torus.

Alternative 1

DEFINITION 2.1.3. A bicolored triangulation is a triangulation Xo, X1, Xo
with a map S : X9 \ X; — {0,1} such that neighbour cells have different

images.!

Before showing that bicolored maps correspond to dessin we will intro-
duce a second alternative and show the equivalence between these. Alternative 2

'Note that only oriented surfaces can have a bicoloured triangulation.

12
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DEFINITION 2.1.4. A tripartite triangulation is triangulation Xy, X1, X9
with a map T : X¢ — {0, 1,2} such that the edges are bordered by vertices
of different image.?

PrROPOSITION 2.1.5. Tripartite and bicolored triangulations are in bijec-

tion.

PROOF. Let Xy, X7, Xo;T be a tripartite map. Xo is orientated we can
so define a clock-wise direction. For each cell we read in that order the
images of its border vertices and put it in a triple P. We define the bipartite
map S by sending a cell to 0 if the parity of the permutation sending P to
(0,1,2) is even and to 1 otherwise. Note that starting from a different point
doesn’t affect the relative parity of a cell.

We now have to show that neighbour cells have different images through
S. It is clear that renaming the elements of Xy doesn’t change the relative
parity of neighbour cells. We can thus consider the next picture, showing

neighbour cells, without loss of generality.
0

2

We see clearly that these have opposite parity.

Let’s take now Xg, X1, X5;S a bicolored map. To get a map T we first
fix a cell B. We assign to each of its summits a different value out of 0,1,2.
Then, by induction we fix the value of the other summits. The bicoloration
of our map implies that each element of X is common to an even number
of cells and thus our construction makes sense. O

We must now see that these presentations are equivalent to dessins.

PROPOSITION 2.1.6. Alternative 1 and 2 are equivalent to pre-clean dess-

mns.

PRrOOF. By last proposition it is sufficent to prove bijection between
tripartite triangulations and pre-clean dessins.

20On the graphics we’ll use the bijectivity of {0, 1,2} and any tree symbol set to visualize
T.
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First let us take a pre-clean dessin where the points of both marks are
drawn. In each cell we take a point that we denote by a third mark. Now
joining all these third type points to those of the first two classes laying on
its edges we get a tripartite triangulation.

The other way round we chose two marks and we take the restriction
of the tripartite triangulation to the edges not touching third mark points.
The third marks remaining lie in the middle of the cell made of the triangles

of which it was a summit. O

REMARK. The second part of the proof doesn’t fix one dessin but pos-
sibly three. To fix a one-to-one correspondance we must choose to always
take the same first two marks to become the basis of the skeleton of the

dessin.

ExaMPLE 2.1.7. We have here our pre-clean petit bonhomme seen as a
tripartite map and a bicolored map. We can remark that on the tripartite

map the point in the outside cell is sent to infinity (we are on P'C).

DEFINITION 2.1.8. The degree of a dessin is the number of it’s edges.

Seen as triangulation it is half of the number of triangles.
We will usually denote it here as N.

DEFINITION 2.1.9. The genus of a dessin is the genus on the surface on
which it is embedded.

We will denote it by g. Two similar dessins (dessins homeomorphic when

considered on a open subset of the surface ) can thus have different genuses
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because of their 'X5’. We have now an easy lemma to calculate the genus of
a dessin.

LEMMA 2.1.10. The genus of a dessin is
1 2
1=

where the x; are the number of first, second and third type mark points

considered on the relevant tripartite map.

ProOOF. The tripartite triangulation is a triangulation of Xs. It’s genus

(what we are calculating, by definition) is

_2-x
7773
where  is it’s euler characteristic. We have that
xX=c—e+v

where c,e and v are respectively the number of cells, edges and vertices
of the triangulation. We have 2N =e and > z; =v. So x =2N —e+ > ;.
So we have to show that

(2.1.1) e=3N

That is clear : each cell is determined by 3 edges, so for each cell we take
one edge but that edge also determines the symetric triangle... so e.2 = 3.c
that is 2.1.1. O

ExaMPLE 2.1.11. Let’s calculate the genus of our petit bonhomme on

PIC. We have
N = 15
Z?:o Zj 17

And so the genus of the dessin is 0.

Before going to the group addicted view of dessins we’ll need two other
different and very basic points of view of dessins. We use the pre-clean
dessins as defined above.

DEFINITION 2.1.12. A marking on a pre-clean dessin is a fixed choice of
one point on each component of X7 \ Xy, and one point in each open cell of
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X9\ X;. We will use the notation e for a point of X(,x for a point in X; \ Xj
and o for a point in Xo \ Xj.

DEFINITION 2.1.13. Let D be a pre-clean dessin with fixed marking.
Then the flag set F(D) of D is the set of triangles whose three vertices
are marked x,eo0 with e in the closure of the segment on which x lies and
with this same segment in the closure of the cell in which o lies. The oriented
flag set F*(D) is the set of flags where the order of the vertices is x, ® o when

read clockwise.

ExaMPLE 2.1.14. Here’s a part of marked dessin and the same dessin

with two elements of F(D).

O

REMARK. It is of course possible when regarding the whole dessins that

the two o are associated.

We have now seen the main definitions concerning dessins, that have a
'topological’ taste. We can now switch to a more algebraic part with the

study of groups.

2.2. Groups

The groups we’ll use will represent the dessin or will act on it. By act

we mean
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DEFINITION 2.2.1. The action of a group G on a set E is a homomorph-
ism between G and Aut(E).

The groups that will represent our dessins are in fact not so far from
topology as their names indicate: cartographical group, ...

DEFINITION 2.2.2. The cartographical group €5 is given by
¢y =< 09,01,09 ‘a? = (0g02)? =1 >

It has a subgroup of order 2 called the oriented cartographical group given
by all even words of €. We denote it Q:; Generatively it can be rewritten
as

¢F =< po,p1,p2|pl = poprp2 =1 >

where
po = 0100 p1 = 0002 P2 = 0201

We will see that the conjugacy classes of C;’ are in some way in bijection
with clean dessins. Therefore we will first describe the action of €5 on the
set of flags of a clean dessin D.

The o; generators of the cartographical group act on F(D) as follows:

Let’s take a flag F

Then we have

* 0o(F) =

° Ul(F) =

[ ] O'Q(F) =

It is easy to see that the action is faithful. We can restrict our attention to

oriented flags who can be denoted by just the e — x edge. In fact it is even
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sufficent to denote for each flag a e and an arrow in the direction of the *.
For the flag shown as above (which is 'conveniently’ oriented) we can also
observe its image under the action of the p;. We get here:

* po(F) = (0100)(F) = o1( )=

o pi(F) =

o p2(F) =

REMARK. In the decomposition of p; we can not use the arrow repres-
entation since the o; send elements from F* — F\ FT and vice-versa.

The study of the dessin through F*(D) under the action of €] makes the
marking unnecessary since each oriented flag is in one-to-one correspondance

with pairs composed of an edge - one of its boundary vertex.

LEMMA 2.2.3. Let D be a pre-clean dessin and F € F*(D) a fized flag.
Let Br,p be the set of elements of C;’ fizing F. Then Bpp is a subgroup
of finite index in € and the stabilizing subgroup Bri p for any other flag
F' € F™(D) is conjugate to Bpp n @; Moreover Br,p depends only on
the abstract dessin D.

PROOF. It is clear that Bp p is a subgroup of €. Since F(D) is finite
so is the orbit of ' and thus Br p is of finite index.

Let’s take F” in F (D) different from F. By applying the different trans-
formations of C;’ to F we can send it onto F’. So we have an element u € C;’
such that u(F) = F' and so Bp,p = u~' B pp. O

THEOREM 2.2.4. (Malgoire-Voisin) There’s a bijection between the iso-

morphism classes of clean dessins and the conjugacy classes of subgroups of
¢ of finite index.

Alternative 3
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PROOF. By the lemma therefore we know that to each abstract dessin
there is a corresponding conjugacy class of subgroups of finite index of (’Z;'.
Now, the other way round, we have, given B finite subgroup of @;“, to con-
struct a unique dessin (abstract) from it.

We consider B as a finite index subgroup of €, and we denote by H the
coset space H = €9/B. We will construct a dessin whose flag set F(D) will
be bijective to H. So F*+(D) will be bijective to ¢ /B . We will also take
care that the action of € on F(D) will be the same as it’s action on H. The
flag F corresponding to B will be defined by the action of B. We start by
looking at the action of o1 and o9 on < g9 > \H. Since two elements of
our expected dessin are in the same oy orbit if they have the o — x edge in
common, we can identify the < oy > \H elements with the o — % edges. So
for elements of < o9 > \H to be in the same oy (respectively o9) orbit they
must have the o (resp. ®) in common. We can apply the same argument to

< o1 > \H and < 09 > \H, this gives us this summary table O
Group Elements | g orbit denominator | o1 ... | o9 ...
<og>\H| o—% X o *
<or>\H| o—e o X .
<oy >\H| e—% * . X

We are now going to give the points, edges and open cell the order of
the double orbit sets< 01,09 > \H, < 09,09 > \H and < 01,00 > \H
respectively . We now have to glue everything together. We take a point
and an edge by taking an element in < 01,09 > \H and < 0,00 > \H
respectively. Elements of these two elements can be seen as composed o1, 09
and g, 09 orbits. Elements of our two sets can be 'glued’ together if they
have a common o9 orbit. We do the same for all cross products available with
our three sets to glue all elements together. The situation can be synthesised
in these two graphs where the Fy_. denote the set of x—e and so on. The F,
denote the set of edges and so on. The parallel between the next diagrams

describes the situation very well.
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<og>\H <oy >\H <oy >\H
1 o o i
< 09,01 > \H < 09,09 > \H < oy,09 > \H

pN + v
1

We have to note that the dessin is independent from the choice of rep-
resentative of the conjugacy class of B. Indeed the action of €3 on H/B and
H/o 'Bo is the same for o € (’Z; and so changing B into 0~ 'Bo doesn’t
change any of the objects above. Considering subsets of €3 acting on H and
remembering the last lemma we can conclude. So to get isomorphic dessins

we must take a conjugate subgroup to B in &s.

REMARK. The easiest way to generate the group given the triangulation,
is to remember that o9 decomposes into cycles that are a representation of
the vertices together with their multuplicity; that ¢; decomposes into A3
cycles of length (permutation of the cells around each vertex)* two and that

000109 = 1.
ExAMPLE 2.2.5. The torus (see picture on first page of chapter two):

1. o9 = (1,4,2,5,3,6)
2. 01 =(1,5)(3,4)(2,6)
3. 0s = (0goy) !
Where 1,2,3,.... are the edges of the triangles. (A we consider each edge

twice !)

®number of edges
“for Bauer and Ttzykson this is swapping the paired arrows of thick graphs (cf. [2])
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We have now seen the main three alternative ways of considering a dessin.
These points of view are often the first face encountered by mathematicians
not studying dessins for their own sake.

We now switch over to The Fourth alternative, the one that made dessins
interesting. This part will be discussed in Part II.



CHAPTER 3

And the Grothendieck Correspondance

3.1. Small reminder.

Some definitions written here will be used in later chapters.

e We say that an algebraic variety V is defined on K a field, if I(V) is
generated by I(V) N K[X].

e A number field K is a finite extension of Q.

e All elements of C that generate a finite extension Q(a) are called
algebraic numbers.

e Each number field K is isomorphic to Q[X]/(P) where deg(P) = [K:
Q]. P has at least one solution in K, defined as a primitive element
of K.

e Q the algebraic closure of Q in C is the field whose elements are all

the algebraic numbers.

So we can write
o=k
KeRr

where R is the set of all galois extensions of Q in C. Given KL € &
with K C L than automorphisms of the latter induce the identity on the
former. That is, every restriction prx : Gal(L : Q) — Gal(K : Q) is a
homomorphism an even an epismorphism since it can be extended to the
hole space.

The restriction maps and the Galois groups of the elements of & form a

projective system and
Gal(Q/Q) = liin Gal(K: Q)

Gal(Q/Q) is called a profinite group.!So, some properties of Galois the-
ory can be extended but still its structure is much less known.

EXAMPLE. Gal(Q/Q) is not finitely generated. Indeed,

!Term introduced by Serre in the fifties, coming from projective limit of finite groups.

22
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#lim Gal(K : Q) = oMo

¢ Now we state a short theorem, from last century, still very usefull in

algebraic geometry.

DEFINITION 3.1.1. Let I be a unique factorisation domain. Let f,g €
L[X] be polynomials with

Z?:o ¢z$l

glz) = iyl

where we suppose ¢, # 0 # Y.
we define the resultant of f and g, Res(f,g) as

¢n ¢0 0 0

0 . 0

Res(f,g) = 0 0 ¢n bo
Ym Yo 0 0

0 . 0

0 0 vm Yo

THEOREM 3.1.2. (of the resultant) Given the notations above, f and g

have a non constant common factor if and only if Res(f,q)=0.
We need a small lemma:

LEMMA 3.1.3. Given the notations above f and g have a non constant
factor in common if and only if there exists polynomials ®T' € L[X] such
that

0 < deg(®) < deg(f)
0 < deg(l') < deg(g)
f.r = g.®

PROOF. (of lemma) We suppose none of our polynomials divides the
other since then the result is obvious.

Let’s take h the common factor to f, and g; we define ® and I" as g = h.T",
f=9o.h.

On the other side if we have f.I' = g.® each irreducible factor of g divides
the left-hand side, since the degree of I' is smaller than that of g there must
be must be at least one that divides f. U
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We can now prove the Resultant theorem.

PROOF. (of theorem) We rewrite ® and I in a sum like we did for f and g
and we note explicitly the equation f.I' = g.®. This gives us a homogenous
system with a non-zero solution. Putting this system into a matrix, we
see that it is Res(f,g) and so having a non trivial solution; by Cramer it’s

determinant must be zero and it’s done. O

3.2. The Belyi Theorem

The history of Finland and Russia have been bounded for ages, so it is
not a surprise that the key theorem that Grothendieck required to confirm
his intuition of the role of dessins was presented by a Russian mathematician
(Belyi) in the Helsinki international mathematical congress. The simplicity
of the proof contrasts with the deepness of the statement. Deligne who
attended the congress sent it to Grothendieck on the back of a letter.

THEOREM 3.2.1. (Belyi - 1979) Let X be an algebraic function defined
over C then X is defined over Q if and only if there exist a holomorphic
function f: X — P'C such that all critical values lie in {0,1,00}.

PRrROOF. The if part is proved by using a Weil’s rigidity criterion.?Let’s
go to the only if...

Suppose X is defined over Q and let g : X — P'C be s.t. all it’s critical
values lie in Q. We construct a morphism A : X — PC all of whose critical
values lie in Q. We define S as the set of critical values of g and all their
Gal(Q/Q) conjugates. We set fo(z0) = Myes(z0 — 5), f € Q2] and we set

d .
fi+1(zj+1) = Resy; (d_g fi(z) = zj+1>

So, the roots of f;1 are the finite critical values of f;. These are defined
over the rational numbers and their degree decrease as their index increase.
So there must be a n for which deg(f,) = 0. We define h as

h = ?:_Ulfi °g
The critical values lie in Q) since the critical values of [om are the critical

values of 1 union with the image by 1 of the critical values of m. We denote
by S’ the set of finite criticical values of h.

%I won’t give a proof here since it is long, quite hard but still ’automatic’. For more detail
see Wolfart’s article [23].
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We now work by iteration on the number of elements of S’. If #5' < 3
a single linear fractional transformation can send the elements of S’ onto a
subset of {0,1,00}. If #S" > 3 we chose three ordered elements that by
a linear fractional transformation we send onto 0,m/(m + n) and 1. Then
applying the transformation
(m+n)"™"

mmnn

z =

(12"

sends them respectively to 0,1 and 0. So we obtain by composition a
morphis such that it’s set of cardinal values strictly decreases. We repeat the
operation till we have a critical value set of strictly less then four elements.

O

DEFINITION 3.2.2. A Belyi morphism is a morphism 8 X — P'C who’s
critical values are elements of {0,1,00}. A pre-clean Belyi morphism is a
Belyi morphism where all the ramifications order above 1 are less or equal to
2. A clean Belyi morphism is a Belyi morphism where all the ramifications

above 1 are strictly equal to 2.

The pre-clean and clean term are not there by mistake as we can already

guess , their relation with their homonym dessins adjectives will appear soon.

DEFINITION 3.2.3. A Belyi pair is an algebraic curve defined over Q and
a Belyi morphism defined on it. Two Belyi pairs (X, ¢); (Y, ) are isomorphic
if there exist an isomorphism p : X — Y such that ¢ = p o ¢.

FACT 3.2.4. An algebraic curve defined over C is defined over Q if and
only if there exists a clean Belyi morphism v X — P'C.

PROOF. It is a corollary of the last theorem and of the obvious fact that
if 44 is a Beliy morphism then 4p(1 — p) is clean. O

To conclude we need this classical lemma.

LEMMA 3.2.5. There’s a bijection between the conjugacy classes of finite
index subgroups of w1 (P'C\ {0,1,00}) and the isomorphism classes of finite
coverings of P1C only ramified above 0,1 and oc.

Finally,

THEOREM 3.2.6. There exists a bijection between the set of isomorphism

classes of clean Beliy pairs and the set of clean dessins.

Alternative 4
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PROOF. Let m; denote the Poincaré group of P!C. m; is generated by

< lp,l1,l0 > that are the loop respectively around 0, 1 and oo.With the
relation lglils = 1. Let us remember the definition of @;r:

€5 =< po,p1,p2|pi = poprp2 =1 >

On the other side let’s have a look at 71/ < [? >. The quotient only affects
the words including ;. Specifically 12 = 1. lyl;lo remains the same.

In fact these two groups are isomorphic. So by the last lemma and
theorem we conclude. O

We have proved the main correspondance relation concerning dessins d’enfants.
We won’t give any concrete examples here since it is the aim of the next part
where this Grothendieck correspondance is studied more deeply. We will also
see why it was interesting for the study of Gal(Q/Q).

We already see that to poles above 0,1 and oo correspond the elements
of X, X1\ Xo and X5\ X respectively.

To conclude this first part here is a short synthesis of the different faces
of dessins d’enfants (non-exhaustive).

Synthesis of the different faces.

Dessins d’enfants are :

1. Grothendieck dessins d’enfants - bipartite graphs embedded into com-
pact oriented surfaces.

Tripartite triangulations of the same surfaces.

Bicolored triangulations of the same surfaces.

Finite index subgroups of the oriented cartographic group €.

Ok W

Belyi functions defined on these surfaces - functions defined over P'C

with at most three critical values being 0,1 or oc.

Most of thes equivalences were known before, the great new one is number
5 because it permits us to study the action of Gal(Q/Q) indeed ...
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CHAPTER 4

Action of Gal(Q/Q) on plane trees.

4.1. Introduction

The interest in introducing dessins in the study of Gal(Q/Q) is that, as
we will see, the action of our group on dessins is faithful. Gal(Q/Q) can so
be studied by observing how it acts on ’trivial’ objects. In this Part we’ll

specifically work out the action on trees.

4.2. Definitions

DEFINITION 4.2.1. A tree is a genus 0 dessin Xy C X7 C X5 where

Xy \ X1 consists of a single open cell.

This definition corresponds to the heuristic definition of a tree. An ex-
ample is the Leila flower we saw before. (In fact I should say Leila’s flowers
since all the trees, consisting of all permutation of the final clusters bearing
two, three, four and five leaves, are called like that)

DEFINITION 4.2.2. The action ¢ of a group G on a set X is faithful if
ker ¢ = {e} where e is the identity of G.

EXAMPLE 4.2.3. Let’s take X =N, G = Ss.

If we take ¢1 = {((12),2); ((2,1), )} then ¢, is effectively a homomorph-
ism but isn’t very interesting for the study of G.

If we take ¢ = {((12),2); ((21),z+1—2(x mod 2)} that is faithful, the
study of the composition of our two functions tells us everything about G.

These two extreme examples show us the importance of being faithful.

4.3. Faithfullness of the action on trees
THEOREM 4.3.1. (Lenstra Jr.) The action of Gal(Q/Q) on the set of
trees is faithful.

To show this we need two small lemma’s.

28
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LEMMA 4.3.2. Let F be a polynomial of degree n and let d divide n. If
there exists a polynomial H monic, of degree d, with no constant term such

that for a polynomial G we have F = G o H then H is unique.

PRrROOF. We can write F down as

F = zn: (ZSZZL'Z
1=0

with ¢, # 0.
Let the degree of G be m (n = m.d). We write G and H respectively as
H = 294 hg 12+ +hz

We can thus rewrite F as
F=v,H"+---+v

Note that ¢g = o and ¢,, = ¥,,. We can notice that the m.d—(m—1).d =
d highest terms coefficients of F are only defined by polynomials in h;, G
has 'nothing to say’. To show that hg,--- , hy are well and uniquely defined
by this system (the one induced by comparing the d highest terms) we must
only solve it inductively starting with hy_; and we will always have the h;
as the unique solution of a linear system. Not forgetting hg = 0, the lemma
is proved. ]

LEMMA 4.3.3. Let G, H,G and H be polynomials such that GoH = GoH
and deg(H) = deg(H) = d. Then H is the image of H by a affine polynomial.

PROOF. Let hg (resp. hg) be the leading coefficient of H(resp.H) and
h{ (resp.hf)) be the constant coefficient of H/hg (resp.H /hq). There exist
polynomials G', G' such that G' o (H/hg — hyy) = G' o (H/hq — hg) . These
are just affine transforms of G and G respectively.

Both (H/hq — h}y), (H/hq — hj) are monic, of same degree, with no con-

stant term. We can apply previous lemma and find

that is
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We can now jump to the proof of the theorem.

PROOF. (of the theorem)

Let 0 € Gal(Q/Q). We will a create a tree D such that the action of o
on it is non-trivial. Let K be a number field and « a primitive element for
K such that o acts non-trivially on «(1). Instead of creating a topoligical
Xo; X1; X9 tree we will (by previous chapter) create a Beliy function 5(z)
defined over K such that B(gjis) # B°(z)'except when ‘clzzig = z (i.e. the
action of o on our dessin is not just an automorphism). Our rational beliy

function is supposed to be a tree, so there’s one open cell on the spere that
is our function f is a polynomial. The unique point over oo is oc.

If a polynomial f is such that 87(z) = ,B(gj_l"_'g) then ¢=0 and one can
set d to 1 (replacing our a,b by multiples doesn’t change anything). We will

thus create 8 a belyi polynomial such that 7(z) = B(az + b) implies that
az + b is the identity on C.
We define f,(z) € K[z] as being the polynomial whose derivative is

falz) = 2°(z = 1)*(2 - o)

«

By the proof of Belyi’s theorem there exists f € Q[z] such that f o f,
is a Beliy polynomial. We call it go. Let u := a”, u # « by (1). Since
f is defined over Q (and Gal(Q/Q) fixes Q) we have that g, := fo f, ,
where f, = fg, is also a belyi polynomial. Let Tj, (resp. T},) be the tree
corresponding to g, (resp. g,) (T, = TJ), we'll show that these two trees
are distinct. That is g,(2) # ga(az +b) if (a,b) # (1,0).

Suppose we have (a,b) such that g,(z) = go(az +b). That is

fofulz) =fo falaz+b)

Applying previous lemma we have that f,(az+b) = e.f,(z)+ f for some
constants e,f. Let’s have a look at the critical points of both these functions.
The right term function has the same critical points as f,. The left term
function has the pre-image of 0,1 and « under az + b as critical points. In

short, with multiplicities

Lt.f. o =23 Lbao aby

oo
rd.f. 0,3 1,2 wl

Identifying the two terms, and comparing the two first critical loci we
get (a,b) = (1,0) and that gives us for the last critical point 4 = o and that

!We denote by 8° the image of B under the action of .
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is contrary to our basic assumption. So g,(2) = ga(az +b) can never be true
with a and b respectively different from 1 and 0. U

This important result shows us that studying the action of Gal(Q/Q) on
plane trees can also give us non-trivial information. This is quiet interesting
since trees are a subset of dessins composed of relatively simple elements.

Our theorem also has an immediate corollary.

COROLLARY 4.3.4. Gal(Q/Q) acts faithfully on the set of genus 0 dess-

mns.

Before going further in the study of the Grothendieck correspondance
we will work some simple examples out explicitly. This simple basis will be
useful later in visualising what is happening with more intricate examples or
inside more abstract proofs.

DEFINITION 4.3.5. The wvalency of a vertex is the number of edges start-
ing from it. It is a local property and a loop is thus counted twice. The
valency of an open cell is the number of edges on its boundary (an edge
being counted twice if bounded on both sides by the cell).

REMARK 4.3.6. Dessins on a fixed surface are sometimes defined by their
valencies (of vertices), this is not always enough since different graphs can
have the same valencies (e.g. a three branch tree with resp. one, two and
three leaves, modifying the order of appearance of leaves (S3 action) can
change the dessin)

EXAMPLE 4.3.7. B(2) = 4.2%.(1 — 2F) with k € Np.
B-1(0) = {0,¢k, ..., ¢k} 2with multiplicities (> valencies ) k,1...1.
A1) =7

1=4.2%(1-2F)

4.2 — 4.5 +1=0

this a bisquared polynomial:

4y —4y+1=0A ZF =y

2The ¢*’s are the k-th roots of unity.
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1 4
y_§ A Z—{21/k,

the multiplicities are all 2.
B~ (00) = oo with multiplicty 2k.

We see that T dessin corresponding to 3 is a tree : it is a polynomial.

i=1.k}=p7"(1)

If we notice that our tree is simply connected then there’s only one way (up
to automorphism) to connect our points and we see that it is a clean tree
(star) with k branches. If we don’t notice it, we can just use the symmetry
of 8 under multiplication by ¢ and look along the x-axis to obtain the same
result with the plus-value that we know that our tree is here (in this form)
made of perfecty straight edges.

In fact this result could have been found much faster using preliminary
results... indeed, A is the doubling of z*... and with this function, the form

of the tree is obvious!

We take now another easy example that is not a tree.

(z-1)?

EXAMPLE 4.3.8. f(2) = —=— withn € Ny
B=1(0) = {¢P, ..., ("} each with multiplicity 2.
p(1) =7
(-1’
1=—
4.2n

We set y = 2" and we solve for y, this gives us

y=-1

The z are thus the opposites of the (™ also with multiplicity 2.
B~ 1(00) = {0,00} we see immediately that we don’t have a tree anymore.
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Dg is a dessin composed of two cells, with the same arguments as before
we can see that it is a clean dessin corresponding to a circle with n points
(alternated) of type * and e.

4.4. Calculation of the beliy function in the genus 0 case.

The examples we just worked out were in the direction Beliy function
-> Dessin. They were quiet easy to calculate. In general, calculating the
pre-image of |0,1] isn’t that easy, specially round the ramification points. Dif-
ferent techniques exist to help us draw the dessin rigorously. The other way
round is also often quiet intrincate since big numbers are used in important
polynomial systems. The calculation of the Grothendieck correspondance is
however often important because it gives explicit examples on which ideas
can be tried.

We will start here by studying the Dessin -> Beliy function technique.
A first remark is that our function will be defined up to composition with an
element of SLy(C) the group of automorphisms of P!C. We will first see the
process to follow to go from a dessin to a beliy function, the justifications
will follow.

4.4.1. Characterisation of a dessin by means of valencies. Let’s
take a dessin D, we will suppose D is clean (each edge is bounded by a e).
To our dessin we will associate two lists of valencies. We set n = np and
m = mp the maximum valency of the vertices and cells of D.

D — V= [vl,...,vn]
¢ = [Cla"'acm]

where v; (resp. ¢;) is the number of vertices (resp. cells) of valency i. The
number e of edges of D is, by Euler’s formula : e = £.{>", v; + >oi¢ — 2}
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4.4.2. Definition of the R system of equations. We set
P(z) = 24+ 30Ot (1<i<n)
Qi(2) = 29+ Djpat (1<j<m)
where the Cj;;D;; are the indeterminates. We denote by E’V’C the
system consisting of {15, Qj}; RV,C doesn’t refer to a single dessin but to a
family a dessins, these defined up to automorphisms of the surface. We will
show that our system in Cjx; D;; has an algebraic solution such that when

substituted into the polynomials we have

2) = [T, 152(2)2
= T G

that becomes a beliy function associated to our original dessin.

4.4.3. Definition of the R system of equation. Our § will also be
defined up to automorphism, to fix it we will arbitrarly fix three indeterm-
inates. We’ll go from a system RV@ to a system Ry, where the SLy(C)

action will be fixed.
4.4.3.1. Step 1.

NoTE. Here we send the center of cell or a vertex to infinity.
1. If the dessin has a single vertex (of valency ig), 49 must be strictly
greater than 1 because we have assumed that D was clean. We set
Pig(2) = Pig(2) = (Ciga +1).2 = Cig o

2. If the dessin has more than one vertex we will take a jo € {1,...,m}
or ig € {1,...,n} in order that v;, or ¢;, is a minimum in I = {u; :
1<i<n,u; #0}U{c¢;j:1<j<m,c¢; #0}. If that is a iy we put

P, (z) = az"0 ! + 01'071,1.0,Q.z”iff2 + ...+ Cig1.2+ Ciy 0)
If that is a jg then

Qjo(2) = oz ! 4 D]-O,cjo_g.z%_2 + ...+ Dj, 1.2+ Djy0)
where the a is an indeterminate.

4.4.3.2. Step 2.

NoTE. Here we fix a Cj; or Dj, to the values 0 or 1 (in bijection).
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1. If the dessin has a single vertex than, by cleanness it consist of at least

two open cells since the dessin must consist of closed loops. We set
Q1(2) = Q1(z) — (D11 +1).z—=Dp
2. If the dessin has more than one vertex:
if Jin € {1,...,n}v;, > 1A (ig defined = iy # ig)
then set
P (z) = P, (2) — (Ciyai+1).z2=Cip
on the other hand
if 371 € {1,....m}|ci; > 1A (jo defined = j1 # jo)
then set
Qi (2) = Qjy(2) = (Dj1 +1).z = Djy 0

If all the v; and ¢; different from zero are equal to one (except the iy
or jg) then we can always choose a couple of this form; (a) (i1,i2); (b)
(i1,71); (¢) (j1,72); where if iy was chosen (resp. jg) than iy,i9 # ig
(resp. 41,72 # js3. Depending on the type we now set

P (z) = ]521(,2) Cii 0
(@)~ { Po(z) = Py(z) — Cipp 41
(b) ~ Pi(2) = Py (2) = Ciy 0
Q) (2) =Qj,(2) = Dj 0+ 1
() ~ Qi (2 ﬁ@jl(z) — Dji 0
Qj»(2) = Qj,(2) — Djp0 +1
4.4.3.3. Step 3.

NoTE. Here we just leave the other polynomials unchanged. It is just

taxonomy.

For all i, j respectively elements of {1,...,n} and {1,...,m} that were not
Pi(z) = Fi(2)

defined previously in 1. and 2. we set
i\Z i(z

and our system Ry,c

Il
O "

is defined by {P;; Q;} for all indices.

THEOREM 4.4.1. Given D a genus 0 dessin, D having a vertex at the end
of each edge. Let V- = {vy,..vn,} and C = {cy,...,cp} be the vertex and cell
valency lists of D; let Ry ¢ be the system of polynomial {P;;Q;} defined as
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above; let e be the number of edges of D; let By, ..., Be_1 be indeterminates;
let B(z) := 2°+ 3670 Bi.2'; let A(2) = [[1-, Pi(2)'; let C(z) = [T, Qi(2)".
We define the system Sy,c as the system obtained by comparing term by term
the coefficients of the equation

A(z) — C(z) = £B(2)?

where the sign attributed to the right is plus if deg(A)>deg(C) and minus
if deg(C)>deg(A)?. Note that S is a system with 2e equations and as many
undeterminates. We have

(1) For each solution s of the system Sy,c we have Bs(z) := A(z)/B(z),
where the coefficients of A and B have been replaced by the solutions of S
corresponding to s, that is a clean beliy function.

(2) The dessins corresponding to the Bs are those with valencies V,C.
There exists at least one solution s such that D = B71(]0;1]).

(3) The system Sy,c admits only a finite number of solutions s. They
are defined over Q and so the same holds for the Bs(2).

We need a lemma for the proof of (1)

LEMMA 4.4.2. (i) Let A(z), B(z) and C(z) be polynomials in C[z]. Sup-
pose that B(z) has distinct roots and that A(z) — C(z) = B(z)?. For a
polynomial D(z) = [[,(z — a;)" we denote D(2) = [[,(z — a;)"~'. Suppose
finally that A.C' — C.A' = A.C.B. Then (z) = A(z)/C(2) is a clean belyi
function.

(ii) On the other side, if 5(z) = A(z)/C(z) is a clean belyi function then
A(z)—C(z) = B(2)? where B(z) is a polynomial in C[z] having distinct roots.

PROOF. (of lemma)

(ii) Let B(z) = A(2)/C(z) be a clean belyi function, 8(z)—1 = A(z)/C(z)—
1 = (A(z) — C(2))/C(z) has roots of order two. So A(z)-C(z) must be equal
to the square of polynomial B(z) having distinct roots.

(i) Let B(z) = A(z)/C(z) where A and C are those from the hypothesis.
We have
A'(2).C(z) — A(2).C'(2)

C(2)?

B'(z) =

That is (by hypothesis)

®note that A and C are never of same degree
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The roots of ' are the multiple roots of A and C (tilding reduces the
multiplicity of roots by one) and the roots of B (that are simple by hypo-
thesis). On a root of A, f — 0; on a root of C,  — oo and on a root of
B B — 1. So we have § that is a beliy function to see that it is clean, one
may notice that B has simple roots and so the ramification indices over 1

are always 2. O
We can now prove our result.

PROOF. (of theorem)

(1) is a corollary of the last lemma.

(2) corollary of the last lemma and the fact that the valencies correspond
to the order of ramifications above the cells and vertices (00,0 and 1)

(3) Suppose Sy,c has infinitely many solutions s. Specifically, given a
dessin D, there exists a dessin D’ with same valencies V,C such that an
infinite number of solutions s induces beliy functions B, corresponding to
D’. By the construction of our system Ry, we have either a vertex of D’ of
valency ig or an open cell of valency jy at oo and a vertex of valency 41 or an
open cell of valency j; must be at 0. The condition C;, ;1 = 0 means that the
product of the vertices of valency i1 is one. There are only a finite number
of realisations of D’ as the pre-image of a rational beliy functions satisfying
these conditions. In particular one of this representations is given by an
infinite number of beliy functions Ss; that is impossible by the Grothendieck

correspondance. O

This algorithm to render a polynomial given a dessin is far from being op-
timized. Optimized: concerning the field of definition of the polynomial,
we do not always get the smallest. Optimized: on speed; it is not always
the fastest. Different (but fairly similar) algorithm exist to solve this prob-
lem. The interested reader can read Granboulan and Couveignes or Wolfart.
Nevertheless this algorithm has a good point: used with Groebner basis al-
gorithm it doesn’t need any human action once programmed. We won’t use
it here since it generates big systems of equations and even big solutions if
the dessin was taken too complicated at the beginning.

We will now have a look at the orbit of a dessin. We will work with trees.

4.5. Trees.

We start with a simple example that will let us guess the way trees were
studied.
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EXAMPLE 4.5.1. (linear trees) We define $(z) = ©~! o Ty o © where
Ty : © +— cos(d.arccos(z)) is the d-th Tchebychev polynomial and where
Ozr—1-2ux.

We have © that sends 0 and 1 respectively on 1 and -1. Remember-
ing that the only critical values of the Tchebychev polynomial are £1 we
find immediatly (basic trigonometry) that our T corresponds to linear trees
(clean or unclean depending on the parity of 3). We see here a Tchebychev
polynomial with domain restricted to R before being 'acted’ by © and the

corresponding tree.

10—

08

06

04

10 08 06 04 02 0 02 04 06 08 10

Tchebychev polynomials generalised in the way we will see, will indeed

permit us to generate all plane trees.

DEFINITION 4.5.2. A generalized Tchebychev polynomial is a non-constant
polynomial over an algebraic closed field k with no more than two critical
values. In extenso, there are values {wy,ws} C k such that if P'(a) = 0 then

P(a) = wigra. If these critical values are £1 we say that it is normalized.

EXAMPLE 4.5.3. The star we have studied before (original z* or doub-
ling) are polynomials with no more than two critical values. They are thus

generalized Tchebychev polynomials.

ProproSITION 4.5.4. We have;

(i) Let P(z) be a normalized Tchebychev polynomial, and let 5(z) :=
1 — P(2)%. Then, B is a clean beliy polynomial and B~'([0,1]) is a tree with
the oo inside its open cell.

(ii) Let T be a tree. Then there is a normalised generalised Tchebychev
polynomial P, such that with 8 := 1 — P? we have T=3"1([0,1]}
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PROOF. (i) B(z) =1 — P(2)? has only 0 and 1 as critical values since P
is normalised. It is thus a Beliy function. It has only one pole and so the
pre-image of [0, 1] is a tree.

(ii) Given T a tree there’s a rational beliy function g such that the pre-
image under beta of [0,1] is T. T is a tree so beta has only one pole. As
done earlier, by composing by automorphisms (€ SLy(C) we have beta a
Beliy polynomial with critical values 0 and 1. By cleannes we must have
B(z) — 1 = c.Q(#)? with ¢ a constant and Q a polynomial with distinct
roots. Critical points of § are the critical points and roots of Q. ’s critical
values may only be 0 or 1 and 1 at a root. So there exists a critical point Z
of Q which is not a root at which

14+cQ(2)?=0
that is Q(2) = £4/—1/c. If we define P(z) = +/—c.Q(z) then we have the
required polynomial. (critical values of P are 1. ]

We describe here another algorithm to generate beliy functions starting from
a tree. Indeed, we could use the algorithm seen before but given the simpler

structure of trees , our algorithm will also be simpler.

DEFINITION 4.5.5. Given a bipartite structure S on our tree T with im-
ages in {£1}, we denote the valency of vertex positive (resp. negative) if
the image of the vertex by S is +1 (resp. -1). The positive valency list of
a tree (resp. negative valency list) is a list of length m, (resp. m_), that
is the maximum positive (resp. negative) valency of vertex. It is defined
as Vi = [v41,..., 04 m, | where vy, is the number of vertices of pos./neg.

valency i.

EXAMPLE 4.5.6. For the tree we will study later:

We have : Vy =[2,2] and V_ =[1,1,1].
REMARK. These valencies are defined uniquely up to inversion of S.

ALGORITHM 4.5.7. (Definition of beliy functions given the positive and
negative valency lists of a tree)
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The construction s similar to that of general dessins. Given a tree T

and Vi = [vo 4, ..., Um,4], Vo = [vo,—, ..., vn —] its Tvalency lists. We set
1)1‘,+71
Pi(z) = 2+ + Z Cip2 (1 <i<m)
1=0
vj,——1
Q](Z) =2+ Z Dj,l.zl (1<j<n)
1=0

where the C; j; D; ; are indeterminates. Define ]N%Vﬁvf the set of polyno-
mials {]51 Q]} R depends only on the +valency lists and so applies only to
a finite number of trees. As before we transform our set R into a set R. We
do as follows:

We choose iy € {1,...,m} such that v, + # 0 and we set

Piy(2) = Piy — Cig0 — (Ciy 1 +1).2

For all i # ig we set Pj(z) = Pi(z). We leave the Q unchanged (they just
lose their tilde). R is defined as the set of {P;,Q;}. We have the following

theorem:

THEOREM 4.5.8. Let T be a tree, assumed to have a vertex at the end of
each edge, with bipartite structure. Let Vi = {v1 4, ..., Upyn + } be its positive

and negative valency list. Define
n
P(z) = [] @s(2)
=1

and let Sy, y_be the set of polynomial equations obtained by comparing coef-
ficients on both sides of

We have:
(i) For each solution s of Sy, v_, let Ps(z) be the normalized generalized

Tchebychev polynomial given by replacing the indeterminates in the polyno-

mial %P(z) — 1 by the values of s, and let B4(z) be the polynomial obtained

by replacing the indeteminates in the polynomial 1 — Py(2)? by the values of

s. Then Bs(z) is a clean beliy polynomial.
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(ii) The trees induced by Bs(z) are exactly the set of trees of valency lists
vy, V_.

(iii) The system Sy, y. admits only a finite number of solutions, all
defined over Q. In particular, all the Bs(z) are defined over Q.

PROOF. (i) By construction P(z) is a generalized Tchebychev polynomial
of critical values 0 and P(0). So Ps(z) is a normalized generalised Tchebychev
polynomial and by previous proposition it is a Beliy polynomial.

(ii) and (iii) are proved in a similar way as the (ii) and (iii) for the general

case. O

4.6. Galois invariants.

4.6.1. What are these invariants? In order to study Gal(Q/Q) by
its action on trees we must be able to classify trees under their Galois orbits.
Several invariants exist and one of the research topic is to fix combinatorial
only invariants of dessins that would fix their orbit so that it wouldn’t be
necessary to calculate explicitly their associated Belyi morphism.

Here are some invariants:

4.6.1.1. The number of faces, edges and vertices.

4.6.1.2. The valency list. Here’s the proof for these two first invariants

in the case of the trees.

THEOREM 4.6.1. The Galois orbit of a bicoloured plane tree lies in it’s

valency class (i.e. the trees with same twvalency lists.)

PROOF. It comes from the fact that the valencies are the multiplicities
of polynomial equations that are clearly Galois invariant ( the Galois action
on a tree is the action of the group on the roots of the polynomial defining
the dessin).

Other invariants are: O

4.6.1.3. The monodromy group of a dessin. The monodromy of a dessin
is, considering its Beliy morphism g X — 3, the group of permutation
generated by 71(3) on the fibre of the basis point of a loop. In extenso:

It is the group whose element represent the lift by S of the different

actions of 7y on ¥. Visually the action is :
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loop around P .
. Lo pee image of b on sheet i

- -~ pre image of loop starting from b i

pre image of b on sheet j

~----_-_ poleP
""" ---bonX

action of 1 p on sheet i

ExaMPLE. The monodromy of the n-star is C,,.

4.6.1.4. The cartographical group of a dessin. That is the subgroup of €
related to the dessin.

One can show (see for example [14]) that these groups are galois invari-
ants. The second one being finer.

We also have a invariant related to compositions of dessins. Given three
algebraic curves X, Y and Z and two ramified coverings 8 : X - Y;vY — Z
then B o+ is the covering X — Z of Z.

If these coverings are dessins we say that this is a composition of dessins.
A special case is the doubling we saw in chapter one. Here is another example

composed
with itself
gives

4.6.1.5. So the galois orbit of a composition only contains dessins that

are composed with the same basic dessin.

4.6.2. What do we know about these invariants? We know from
the work of Granboulan ([10]) That the composition and the valency invari-

ants are necessary and sufficent conditions to separate orbits of Y-trees.

DEFINITION. A Y-tree is a tree where one and only one vertex has

valency three and the others have valency 2 or 1.
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ExaMPLE. The Coxeter graph of D, with n > 4.

Usually for trees all the invariants above are sufficent to fix galois orbits.
Usually, except in the case of e.g. Leila’s flowers. For that case Zapponi
introduced another invariant, similar to the signature of a permutation.

Some other interesting information we have, is about the the monodromy
groups of trees. Indeed, we have the next theorem (for more information see
Matzat) for meromorphic functions on compact Riemann surfaces with one
pole - that is, trees, up to automorphism - that classifies the monodromy

groups.

THEOREM 4.6.2. Let G be the Monodromy group of the meromorphic
function B defined on the compact Riemann surface X, with a single pole.

Then the composition factors of G are in the following list:

1. Cy, cyclic groups

2. A,, alternating groups

3. Mi1, Mos, two Mathieu groups
4. PSLy(F,), projective groups

PRrOOF. We have 8 X — P!C with a single pole. It can be split into a

maximal chain of morphisms of compact Riemann surfaces.
x P Propic
- =

Maximality implies for each sub-function to have its monodromy prim-
itive. Let’s take (;, ;11 with

i € {0,...,m —1}. By a result of Guralnick and Thompson we have that
the monodromy of §; 11 o 3; has its composition factors inside the union of
composition factors of the monodromy of the functions £; and B;11.

So we just have to prove that for each i in 0, ..., n-1 , 8; has the com-
position factor of its monodromy being in the list.

B has a single pole, so, for each B; there’s a point P; such the ramification
degree of 5; above it equals 3;’s total degree. The monodromy of 5; is a factor
of the fundamental group 7(X;\ R;} where R; is the set of ramification points
corresponding to f3;, X;. So, it contains a cyclic permutation corresponding
to a loop around P; (that is, imagine the case of a tree, the circulation of
the edges all ’around’ the tree, i.e. permutations generated around o0o).

We have so reduced our work to the case of primitive permutations con-

taining a cyclic permutation.
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If G is solvable then the composition factors are cyclic.

If not, by Burnside (1911) (every non-solvable transitive group of prime
degree is doubly transitive ) and Schur (1933) (every primitive transitive
group of composite degree which contains a cyclic permutation is doubly
transitive ). We can apply the following (Feit):

Let G be a non-solvable doubly transitive group of degree n which con-
tains a cyclic permutation, then we have :

(a) G~ A, or S,

or
(b) n=11 and G ~ PSLy(Fy1) or My
or
(c) n=23 and G ~ My3
or
(d) n= q;l__ll and G ~ ¥ where ¥ is a subgroup of PI'L,,(F,)* containing
PSLy,(F,). When m > 3 that is also the group of collineations of P~ 1(F,)

O

4.7. Bestiary

We will now see two examples.

EXAMPLE 4.7.1. We take a tree T with valency lists V. = [1,1,1] and
V_ = [2,2]. That is the tree pictured just before. We will construct our
systems R and then R. We have

r 151(2 :Z+017U

5
Il
~
|
N
+
R

L Q2(2) = 22 + Dy1 + Dayg
Choosing 4o as 1 we get for R:

| Q2(2) = 2>+ Da;1 + Doy

*PTLn(F,) is called the semilinear group; it is the extension of PGLy(F,) by the
Frobenius automorphism.
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We fix (9 to -1 to fix automorphisms. This system has been solved,
minimising the field of definition(by Schneps), using the Groebner basis al-
gorithm. It gives three solutions corresponding to the roots of the polyno-

mials
Q(z) = 252% — 622 — 62 — 2

To each root p of Q will be associated values to our indeterminates. p takes
one real value and two complex conjugate values. They give birth to our
original dessins and the two here under. (note that conjugating induces an

axial symetry around the real axis.)

It is easy to see that these are the only trees of valencies [1,1,1],[2,2] and
thus here valency class and galois orbit are the same. This case is 'very’

common. A problem is to quantify the 'very’ !

EXAMPLE 4.7.2. For this example we use a direct method.
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B is a rational function, whose pre-images of 0 and 1 are opposites (1).
It has a pole in 0 of order 2 (= 2.1). Let’s fix the pre-image of zero at 1 and

-3 of multiplicities 3 and 1. Beta has a general form :
(x+3)(z —1)3

pla) =

Condition 1 must be verified :

= (z+3)(z-1)° —pz=(@-3)(z+1)>

a2t — 622 + 8z — 3 — pz = 2t — 622 — 8z — 3
So finally:

(z+3)(z —1)°

Blz) = 16x

REMARK. We can note that the degree above oo is 2.(4-1)=6. (once for

+ and once for - 00)

ExaAMPLE 4.7.3. We come back here to one of our early dessins, I mean
Leila’s flowers.

We have V, =1[0,1,1,1,1,1] and V_ = [15,0,0,0, 1]. First let us have a
look at the valency class. A simple construction shows that the only trees
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with the same valencies are all the trees with the trees obtained by per-
mutation of the final clusters. There are, not forgetting cyclicity invariance :
5'4'5& = 24. The same grobner basis technique gives twelve different beliy
polynomials generating unequivalent trees. The # of the galois orbit we
already have is thus 12. It appears that these twelve elements are the trees
obtained by permutations of the 3,4,5,6-clusters by elements of A4. And this
is till now unexplained. The twelve other trees happen to be in the same

orbit. So the valency orbit splits the galois orbits; that was the unusual case.
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Sketch of the dessin through Mathematica®

Having a ’small’ Beliy function, it is often interesting to have an idea of
how the dessins looks like. These set of commands in Mathematica® gives a
sketch of the dessin given the Beliy function ¢. The only thing mathematica
does is calculating explicitly the solutions of ¢(z) = A for A ranging between
0 and 1. The X’s are taken uniformly on [0,1] but the image concentrates
the point round the pre-images of 1 as

lim (z)'/" =1
n—+oo

where z'/" is defined over ]0,1].

The image obtained is thus more likely a sketch of the 10° tangential base
point as defined by Deligne (Le groupe fondamental de la droite projective
moins trois points, In Galois Groups over QQ, editors : IThara, Ribet, Serre;
Math. Sci. Res. Inst. Publ. 16, Springer-Verlag)

ALGORITHM 4.7.4. We use the // sign to denote a comment

Iterations=6; // = number of X’s; as explained before there is no use in
taking X big.

Beliy[ z|=z" 5; // = Beliy function studied, here a 5-star

K[ j|]= Transpose[ Function[z,{ Re[x],Im[x]}[[x/. NSolve[Beliy[z]|==j+1,z]]];
// calculation of roots

Resul=Flatten[Table[K[(x-1) /Iterations],{z, 1, Iterations+1}],1]; //nothing
interesting

ListPlot[Resu, Axes->False,Prolog->Pointsize[.015]] //the plot

®At least it starts from one and shows the direction to follow to go to zero...
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