
GAEL XIII

Geometric Aspects of Valuation Theory

Bernard Teissier

Abstract

These notes 1 were taken during the mini-lecture series of the thir-

teenth edition of GAEL which was held in Luminy, France, from March

21st to March 25th. Professor Teissier made an introduction to the geom-

etry of valuations and presented his latest results concerning the problem

of local uniformization ([5]).
Lecture 1

1 Introduction

Valuation theory largely fell in disgrace among algebraic geometers after Hi-

ronaka’s 1964 proof of resolution of singularities of a field of characteristic zero

([3]). His proof made no use of valuation theory and thus departed from the

approach which had been advocated by Zariski. The lack of success of the at-

tempts to adapt Hironaka’s techniques to positive characteristic generated a

revival of valuation theory about 10 years ago. Before proceeding to modern

valuation theory, let us first go back in time to look at its history and evolution.

2 History

2.1 Dedekind and Weber

In 1882, Dedekind and Weber ([7]) introduced places which as we shall see are

the same thing as valuations in order to construct algebraically the Riemann

1For any remark, contact Jimmy Dillies : jimmyd@math.upenn.edu
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line at infinity

Figure 1: Resolving singularities and adding points at infinity

surface associated to an affine curve over C (Riemann’s construction was topo-

logical). The purpose was to construct the Riemann surface from the field of

functions of the curve. If C is an irreducible affine curve which is the zero locus

of the irreducible polynomial F (x, y) ∈ C[x, y], the ring of regular functions on

C is defined as

A = C[x, y]/F (x, y);

it is an integral C-algebra. The field of rational functions on C is the field

K = FracA of fractions of A. Note that it is an extension of C; the elements

of C are the constant functions on the curve C. The aim is to construct a

one dimensional compact complex manifold (a Riemann surface) with field of

fraction K.

Idea: Think of a point x ∈ C as a map evx : K −→ C ∪ {∞} : f
g
&→ f(x)

g(x)

where f, g ∈ A. Note that here our base field is C ↪→ K.

Define Vx = {h ∈ K|evx(h) is finite}

Definition Given a field extension k ↪→ K, a k- place P of the field K with

values in a field L which is also an extension of k is the datum of a subring

VP ⊂ K together with a homomorphism P : VP → L such that

• If x /∈ VP then 1/x ∈ VP and P(1/x) = 0.

• There exists x ∈ VP such that P(x) ̸= 0.

• For all c ∈ k, P(c) = c.

Example Let C be an algebraic curve in C2

1. Any nonsingular point of C gives a place of K = C(C)
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2. A singular point gives rise to several places – one per branch (locally an-

alytically irreducible component at the singular point). This corresponds

to the fact that if we take a sequence of non singular points xi ∈ C tend-

ing to the singular point x, the limit value of f(xi)
g(xi)

exists if all the xi are

ultimately on the same branch, and then it depends on the branch.

3. Points at infinity also give places (which might be singular or not depend-

ing on the behaviour of the curve at ∞.) Consider the limit of evx as

x→∞.

If we remember that the normalization n: X → X of an integral algebraic curve

X is a finite birational map which has the property that X is non singular and

for each x ∈ X there is a bijection between |n−1(x)| and the set of branches of

X at the point x, we see that all the ideas encompassing the previous example

are actually contained in the following theorem :

Theorem 2.1 (Dedekind & Weber) Denoting by X the projective closure of an

affine algebraic curve C with algebra A, and by X its normalization, the map

x $→ evx(f
g ), where f

g is viewed as a rational function on X, defines a natural

bijection

{Points of X}
bij
←→ {C-places of K = Frac(A)}

The point is that considering places simultaneously adds the points at infinity

and desingularizes; it gives the set-theoretically the Riemann surface. Of course

there remains to define its topology.

2.2 Hensel

In 1897, Hensel ([2]) defined p-adic valuation 2 on the field of rationals.

νp : Q∗ → Z : q = pn a

b
$→ n

where (a, p) = (b, p) = 1. It is easy to check that this is well defined. The

valuation verifies the following properties :

1. νp(xy) = νp(x) + νp(y)

2. νp(x+ y) ≥ min(νp(x), νp(y)) (in case νp(x) ̸= νp(y) we have an equality.)

2Stricto sensu, he defined the absolute value ∥q∥ = p−νp(q)

3



3. νp(0) = +∞

Hensel’s motivation was to apply ... Hensel’s lemma. The aim was to study

diophantine equations by looking at their solutions in the completions Qp of

Q and Hensel’s lemma is an adapted version of the implicit function theorem

which allows one to give fairly efficient criteria for the existence of solutions in

Qp. The approach was so successful that it has changed the course of algebraic

number theory and has remained a very active subject up to these days.

2.3 The parallel

In the case of the algebraic curve C we can associate to each non-singular point x

a valuation νx which assigns to each rational function f/g its order of vanishing

at x, νx(f/g) = νx(f)− νx(g).

This is in fact among the first historical parallels between function fields and

number fields :

{ p : primes } ←→ { x : non singular points }

{νp} ←→ {νx}

This analogy suggested in particular to take the mx-adic completion ÔC,x and

later the henselization, and opened vast new fields in commutative algebra.

3 Valuation rings

Definition A valuation ring 3, is an integral domain V such that if K is its

field of fraction and we have x ∈ K \ V then x=1 ∈ V .

This is equivalent to saying that given any two nonzero elements a, b ∈ V , either

a|b or b|a in V , or also that any finitely generated ideal I = (a1, . . . , ak) of V is

principal and generated by one of the ai.

Example Let x ∈ C be a non-singular point of an algebraic curve : the local

ring OC,x is a valuation ring. More generally, any one dimensional regular local

ring is a valuation ring.

3For a general reference, consult [6]
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Example Integers localized at a prime p form a valuation ring : Zp = {a/b | (b, p) =

1}.

Exercise Show that a valuation ring is a local ring.

Exercise (The parallel between Dedekind-Weber and Hensel)

Given an extension k → K of fields , show that there is a bijection

{ Valuation ring in K s.t. mV ∩ k = {0} }

↕

{ Places of K with values in extension L of the basefield k and constant on k}/

Here the equivalence means that we identify two places if they differ only by

composition by an injection L ↪→ L′. Modulo this equivalence we can always

assume that L is the residue field V/mV .

The map is given by P $→ VP ⊂ K.

3.1 Pairing valuation rings and valuations

Let V be a valuation ring, we define a pre-order on V :

a ≤ b ⇔ (a, b)V = (a)V ⇔ a|b

Remark that it is only a pre-order as (a ≤ b)∧(b ≤ a) does not imply that a = b;

it merely says that they are related by an invertible element of V . That is, there

exists some multiplicative unit u ∈ UV ⊂ K∗ such that a = ub. Naturally, the

preorder on V gives rise to a total order on the group Φ = K∗/UV . In turn, we

get a map

K∗ ν
−→ Φ

(First extend to V/UV , then symmetrize and embed in K∗)

Theorem 3.1 The function ν is a valuation.

The order on Φ permits us to decompose it into Φ− ∪ {0} ∪ Φ+. Define RV =

ν−1({0} ∪ Φ+) it is a valuation ring of maximal ideal mV =

nu−1(Φ+).

Example Take Φ = Z2
lex the set of bi-integers lexicographically ordered. The

set Φ+ = (a, b) ∈ Z2|a = 0 and b > 0 or a > 0 is displayed on the picture.
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One can check that Φ+ is neither finitely generated nor well ordered.

Consider now the tower of subrings of C(x, y):

C[x, y]m ⊂ . . . ⊂ C[x,
y

xn
]m

︸ ︷︷ ︸
Rn

⊂ . . .

Each of those rings is isomorphic to a polynomial ring in 2 variables, localized

at the origin.

Claim: The
⋃

n≥1 Rn is a valuation ring with value group Z2
lex. Regardless

the fact that this example is not Noetherian, it is an important valuation.

In general, a Noetherian valuation ring is a one dimensional regular local ring

because if it is noetherian, its maximal ideal is principal.

4 Zariski-Riemann “Manifold”

We work with an algebraic variety X/k. Consider the extension K = k(X) of

k, where k(X) is the field of rational functions on X . We want to understand

the valuations of K, that is the valuation rings V where k ⊂ V ⊂ Tot(V ) =

K = k(X) which are such that the valuation is trivial on k (in other words

k ∩mV = {0}).

Lemma 4.0.1 Given a valuation ring V , the set of points of X such that

OX,x ⊂ V and mV ∩ OX,x = mX,x is a closed irreducible subvariety of X.

It is called the center of the valuation on X.

Note that the center may be empty; this is the case if X is an affine algebraic

curve and the valuation corresponds to a place at infinity. If the center is

not empty, it corresponds to a prime ideal p is some affine chart SpecA where

A ⊂ k(X) and if Rν is the ring of ν we have that A ⊂ Rν and mV ∩A = p. The

following result generalizes what we saw about curves and places:

Theorem 4.1 (Valuative criterion of properness, first version) X is proper

over k (that is compact over the complex field) if and only if every valuation of

k(X) has a non-empty center on X.

Proof See [1]

Now assume X is proper over k; we look at all the proper birational maps

X ′ −→ X defined over k. (think in terms of Schemes; a point of X is a closed
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subvariety of X , irreducible over k, )

Defineamap : { Valuations k(X)/k } ❀ lim
←−

X′→X

X ′

ν !→ { center ofν on X ′}X′

The right-hand side is clearly a projective system of (schema-theoretic) points

indexed by birational proper maps X ′ → X .

Theorem 4.2 (Zariski) This map is a bijection

When X is a curve we have X̄ → X ′ → X (the birational maps above X are

finite as they are proper) and X̄ is the normalization of X !

Lecture 2

In last lecture I forgot to mention the

Theorem 4.3 (Ostrowski) The only valuations on Q are the trivial one, the

absolute value and the p-adic valuations, for all positive primes p.

Further on we have the analogy, for x ∈ Q and f ∈ k(X) with k algebraically

closed
∏

Places of Q

|x|P = 1←→
∑

Places of k(X)

νP(f) = 0

where the right hand side can be read as the fundamental theorem of algebra if

one considers the degree of a polynomial as the order of its pole at infinity.

Behind Zariski’s theorem lies the valuative criterion for properness, which, al-

though essentially known in Zariski’s era, was only christened by Grothendieck.

Let V be a k-valuation ring and L be its field of fractions

X ′

f

!!

Spec L
h′

""

!!
X Spec V

h
""

h̃!

!

##!
!

Theorem 4.4 ( Valuative criterion of properness, second version)

The map f is proper if and only if for any such diagram there exists a lifting

h̃ : Spec V → X ′.
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Moreover, if the map is separated then the lifting is unique. [The idea is that if

the map is not proper, some points are missing in the fibre and there is no center

for a valuation “upstairs”]. As a consequence, since we consider birational maps

and valuations of the field k(X) of rational functions on X , the map from the

Zariski-Riemann manifold X to its manifold X factors uniquely through any X ′

dominating X by a proper and birational map. In other words, the valuations

of X ′ are the same as those of X .

Example One should consult the notes of Favre and Jonsson ([4]) regarding

the fiber over the origin of SpecR of its Zariski-Riemann manifold, in the case

where R = C[[x, y]].

The Zariski topology was introduced by Zariski precisely to endow the Zariski-

Riemann manifold with a topology for which it is quasi-compact. If X is an

algebraic variety over a field k, the Zariski (k-)topology has as a basis of open

sets the complements of algebraic subvarieties defined over k and X is quasi-

compact for that topology. Then the Zariski-Riemann manifold viewed as a

limit of birational (proper) maps can be given the projective limit topology, the

coarsest for which all the projection maps are continuous. It is then also quasi-

compact. In general, if when we have the Zariski-Riemann manifold dominating

X
π
→ X , the points of X are valuations and X can be given the structure of a

ringed space with local rings which are the associated valuation rings :

OX ,ν = Rν

Given an algebraic variety X , the map X → X from the Zariski-Riemann

manifold to X is in some sense “the” resolution of the singularities of X but,

X is, alas, very large; as soon as X is of dimension > 1, it is not an algebraic

variety .

Therefore it is a fundamental problem to get a grip on rings R′ :

R = OX,π(ν) ⊂ R′ ⊂ Rν

which are local, regular and essentially of finite type over R (i.e. R′ = R[a1, . . . , an]p);

this is the problem of local uniformization which was solved by Zariski for char-

acteristic 0 in 1944 ([8]).

We recall the following definitions :
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Definition The rational rank of an abelian group Φ is the dimension of Φ⊗Z Q

as a Q-vector space. We will write r.rk(Φ). If the valuation ν has group of

values Φ we shall also say that ν has rational rank r.rk(Φ) and write r.rkν.

Definition A subgroup Ψ ⊂ Φ is convex if and only if Φ/Ψ can be ordered

in such a way that the canonical surjection from Φ is monotonous. This is

equivalent to saying that if we have x, y ∈ Φ and 0 ≤ y ≤ x and x ∈ Ψ, then

y ∈ Ψ.

Example In the example with Z2
lex we can take Ψ = {(0, b)}. Note that this

is the only possibility.

Any totally ordered abelian group with no nontrivial convex subgroup embeds

in R as an ordered group. It is not difficult to see that that the convex subgroups

of a totally ordered abelian group form a totally ordered sequence for inclusion.

Moreover if Rν is a valuation ring with value group Φ, the correspondance

between convex subgroups of Φ and ideals m ⊂ Rν given by:

Ψ %→ {x ∈ Rν/ν(x) /∈ Ψ}

is a bijection between the set of convex subgroups of Φ and the set of prime

ideals or Rν .

Definition The rank (or height) of Φ is the length (the ordinal, if it is infinite)

of the sequence (with respect to inclusion) of all convex subgroups of Φ; it is

also the length of the sequence (with respect to inclusion) of the prime ideals

mνi
of Rν that is, the Krull dimension of Rν . It is also the length of the

maximal sequence of valuation rings containing Rν : Rν ⊂ Rν1 ⊂ · · · ⊂ Rνn
, or

mνn
⊂ · · · ⊂ mν1 ⊂ mν . (we write Rνi

for Rmνi
) where mνi

is the i-th prime

ideal of Rν . We will write rk(Φ) or rk(ν).

In the example with Z2
lex, we have a surjective monotonous map Z2

lex →

Z : (a, b) %→ a. We have Rν =
⋃

k[x, y
xn ]m ⊂ k(x)[y]m = Rν1 . Note that

x /∈ yRν1 ∩ Rν (we use the same notation as in the definition of the example)

and that therefore there is no domination between the two valuation rings. This

is expected since any valuation ring is a maximal local ring in its field of frac-

tions with respect to the domination relation.
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Theorem 4.5 A valuation of rank 1 takes values is a subgroup Φ ⊂ R (up to

ordered isomorphism of the value group).

Theorem 4.6 (Abhyankar’s inequality) If R be a Noetherian ring and R ⊂

Rν ⊂ K, with K the field of fractions of R, then

r.rk(Φ) + (rkΦ) ≤ dimR

In the case of equality we call the valuation an Abhyankar valuation.

5 The Strategy for local uniformization

The main idea is to make the (compplicated) valuations on a noetherian ring

appear as deformations of simple valuations on a non-noetherian ring. This is

best explained by examples:

Example Let Γ = ⟨γ1, · · · , γg+1⟩ ⊂ N where ⟨A⟩ means the semi-group of all

non negative integral linear combinations of the elements of A, and where the γi

are coprime, ordered in accordance to their indices. Assume that no γi belongs

to the semigroup generated by the previous ones; this means that the γi form a

minimal system of generators of ⟨γ1, · · · , γg+1⟩.

Example Let (si)i≥1 be a sequence of positive integers such that si ≥ 2 for

i ≥ 2. We can define the family of rational numbers : γ1 = s−1
1 , γi+1 =

siγi + 1
s1···si+1

. Take Γ = ⟨γ1, · · · , γi, · · ·⟩ ⊂ Q+. If si := i then the group

generated by Γ is Q.
Lecture 3

To such semigroups we can associate geometric objects, the spectra of their

semigroup algeras over an algebraically closed field k. The Krull dimension of

the semigroup algebra is equal to the rational rank dimQ(Φ⊗Z Q) of the group

Φ generated by Γ.

In our case this rank is equal to one, so that our semigroup algebras correspond

to curves. In the first example, we have a mononial curve in Ag+1(k):

ui = tγi , 1 ≤ i ≤ g + 1, γi ∈ N

In the second example, we can also consider we are working with a monomial

curve ui = tγi , but embedded in an infinite dimensional space.

We are now going to deform these rings, and for that we need equations for them.
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These equations correspond to relations with integral coefficients between the

generators γi. The equations defining the monomial curve of example 1, that

is, the relations between the γi, may be fairly complicated. We shall make the

following simplifying assumptions :

1. If ei is the greatest common divisor of (γ1, · · · , γi) and if we write ei =

si+1ei+1, then for 1 ≤ i ≤ g

si+1γi+1 ∈< γ1, · · · , γi >

2. siγi < γi+1 for 2 ≤ i ≤ g.

Then the relations are generated by the following g expressions of the first

condition :

si+1γi+1 =
∑i

k=1 ℓi+1
k γk, with ℓi+1

k ∈ N. These relations are not uniquely

determined but in view of the first condition there is a unique way of writing

each relation satisfying the condition that ℓi+1
k < sk for 2 ≤ k ≤ i. The first

condition implies that in the special case considered, the monomial curve is a

complete intersection with equations

usi+1

i+1 −
i∏

k=1

u
ℓi+1

k

k = 0, 1 ≤ i ≤ g.

In the second example, it is not difficult to see, using the fact that (γ1, · · · , γi)

are in the subgroup of Q consisting of rational numbers which can be written

with denominator s1, · · · , si, that all relations are generated by the :

si+1γi+1 =
i∑

k=1

ℓi+1
k γk, with ℓi+1

k ∈ N, i ≥ 1,

so that the equations of our monomial curve are

usi+1

i+1 −
i∏

k=1

u
ℓi+1

k

k = 0, 1 ≤ i.

All these equations are binomial equations defining irreducible varieties in a

possibly infinite dimensional affine space. They are (non normal) toric varieties.

Les us now remark that in both examples we have γi+2 > si+1γi+1 and let us

deform the equations in the following manner: in the first example we consider
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a variable v and the equations

usi+1

i+1 −
i∏

k=1

u
ℓi+1

k

k − vui+2 = 0, 1 ≤ i ≤ g − 1 (1)

u
sg+1

g+1 −
g∏

k=1

u
ℓg+1

k

k = 0 (2)

In the second example, we introduce a variable vi, for each index i ≥ 2 and

consider for i ≥ 1 the equations

usi+1

i+1 −
i∏

k=1

u
ℓi+1

k

k − vi+1ui+2 = 0

In both cases we have an obvious elimination process in the polynomial ring

k[(v±1
j ; (ui)]. In the first example, setting v = 1, the result is an isomorphism

R = k[u1, u2]/(F ) = k[u1, · · · , ug+1]/(us2
2 − u

ℓ
(
12)

1 − u3, u
s3
3 − u

ℓ31
1 u

ℓ32
2 − u4, · · ·),

where F (u1, u2) is the result of the elimination; for example if Γ =< 4, 6, 13 >,

the equations of the monomial curve are

u2
2 − u3

1 = 0 (3)

u2
3 − u5

1u2 = 0 (4)

and since the deformation affects only the first equation and is u2
2−u3

1−vu3 = 0,

we find

F (u1, u2) = (u2
2 − u3

1)
2 − u5

1u2 = 0.

and for the second example, stting all vj = 1:

R = k[u1, u2] = k[u1, · · · , ui, · · ·]/(us2
2 − u

ℓ
(
12)

1 − u3, u
s3
3 − u

ℓ31
1 u

ℓ32
2 − u4, · · ·)

In both cases, giving to the variable ui the weight γi determines a valuation on

the ring and the isomorphism gives a way to compute it: in the right hand side

the value of a polynomial P (u1, u2) rewritten replacing systematically each usi

i

by
∏

k<i u
ℓi

k

k +uk+1 is the minimum of the values (i.e.,weights) of its monomials,

since now there can be no more cancellation because no usi

i appears, and this

determines a valuation of R with semigroup Γ.

Giving the variable ui the weight γi determines a monomial order on the polyno-

mial ring k[(ui)], and therefore a filtration by the minimal order of the monomi-

als in a polynomial. Each of the equations which we have created by deformation
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has an initial form with respect to this filtration which is precisely the binomial

equation which we have deformed.

In fact, we have a faithfully flat family parametrized by k[(vj)] specializing

the ring R to the ring of the monomial curve defined by the initial binomial

equations. The equations of R play the role of a standard, or Gröbner, basis

with respect to the monomial order.

Since we have seen that the Krull dimension of that ring is equal to one, the

second example contradicts the semicontinuity of fiber dimensions in a family.

This is due to what I call the abyssal phenomenon. Let us write out the

system of equations appearing in the second example:

us2
2 − u

l21
1 − v2u3 = 0 (5)

us3
3 − u

l31
1 u

l32
2 − v3u4 = 0 (6)

...
... (7)

usi+1

i+1 −
i∏

k=1

u
li+1
k

k − vi+1ui+2 = 0 (8)

...
... (9)

When all vi ̸= 0, say equal to one, it amounts actually to an endless sequence

of substitutions and therfore it cannot decrease the dimension, while when we

specialize to the monomial curve, making all vi+1 = 0, we obtain equations

which also express all ui, i ≥ 3 algebraically in terms of (u1, u2), but now u1

and u2 are algebraically dependent so that the dimension drops to 1.

However if k is of characteristic zero we can also view these equations as defin-

ing a very transcendental curve in A2(k) whose Zariski closure, which is all our

equations see, is the entire affine plane.

To see this, use the order on the γj to order the equations u
sj

j − · · · as we

did above, and for a given n ∈ N truncate the system at order n in the folowing

sense: keep all equations of index < n, replace the equation of index n by its

initial form, which involves only variables of index ≤ n, and forget all the other

equations. We are now reduced to the case of example 1 except that we have
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to multiply γ1, · · · , γn by their common denominator, obtaining a sequence of

coprime integers.

If k is of characteristic zero we can solve the corresponding equation Fn(u1, u2) =

0 by a Puiseux expansion

u2 =
∞∑

j=1

a(n)
j u

j
s2···sn

1

Using the Smith-Zariski formula for the intervsection number of parmetrized

curves, one can show that as n increases these Puiseux expansions converge in

the ring k[[tQ+ ]] of series with well ordered sets of exponents to a series w(u1)

of fractional powers of u1 whose exponents have unbounded denominators. Be-

cause of Newton-Puiseux, setting u2 = w(u1) can not cause the vanishing of a

polynomial (or even a power series) in (u1, u2). It parametrizes a transcendental

curve whose Zariski closure is A2(k).

We have produced it as a deformation of an algebraic, indeed toric, curve of

infinite embedding dimension.

This curve defines a valuation on k[u1, u2] by taking, for any polynomial

P (u1, u2), the order in u1 of P (u1, w(u1)), which is finite as we just saw. It is of

the same valuation as that which is obtained as explained above, as one verifies

with a little work.

One of the morals of this story is that although algebraic equations do not “see”

this very transcendental curve, it is visible in algebraic geometry as a valuation.

This is a very general fact.

Now, what is the use of this for local uniformization?

Remember that we are interested in building a regular local ring R′ between

R and Rν , which is essentially of finite type over R (i.e. the problem of local

uniformization). The basic idea is that over an algebraically closed field of any

characteristic it is not difficult to resolve by toric maps the singularities of an

irreducible variety (of finite embedding dimension) defined by binomials. In the

case of the first example, that toric resolution will also resolve the singularities

of the plane curve obtained by elimination, viewed as embedded in affine g + 1-

space; this is due to the fact that the deformation adds only terms of higher

weight than the initial binomial equation.
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The second example is not so convincing as far as local uniformazaiton is

concerned since the ring is regular, and also because there is no resolution in

the usual sense of a space defined by infinitely many binomial equations. But

we can make it more complicated as follows: in some of the equations instead

of adding a linear term uj+2, we can add with vi+2 a series in the variables of

index ≤ j + 2 of weight greater that the weight of the initial binomial and were

no two terms have the same weight, and thus manufacture a singular ring, which

may be of dimension > 2. We can also add uj+1 instead of u3, uj+2 instead

of u4 and so on, to deform our curve into a polynomial ring k[u1, · · · , uj] in j

variables. When we grow tired, we go back to adding linear terms as above,

which we must do anyway if we want the result to be noetherian. The resulting

ring still specializes to the ring of the monomial curve which admits as equa-

tions the initial forms, and therefore a toric resolution of the binomial variety

corresponding the finitely many binomials which we have deformed in this new

manner will provide a local uniformization of the valuation defined on R.

In short, if we have manufactured a complicated singular ring R by adding

non linear terms of higher weight to a finite number of the binomial equations

of our curve we may be glad to exchange its noetherianity for the simplicity of

dealing with a toric variety, provided we can show that it suffices resolve finitely

many of the binomials to uniformize the valuation on R. One can show that

this is indeed the case.

Now that the claim is that this is essentially the general situation, at least

when R is a complete equicharacteristic local ring with an algebraically closed

residue field.

Let R ⊂ Rν be the inclusion of a ring in a valuation ring. The only really

important case for local uniformization is when R is an excellent equicharac-

teristic local ring and Rν dominates R, i.e., mν ∩ R = m, and the residue field

extension R/m ⊂ Rν/mν is trivial; we say then that ν is a rational valuation of

R. We will assume that we are in this situation.
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We may consider the filtration of R by the ideals Pφ(R) = {x ∈ R/ν(x) ≥ φ}

and P+
φ (R) = {x ∈ R/ν(x) > φ}, and this gives us an associated graded ring

grνR =
⊕

φ∈Γ

Pφ(R)

P+
φ (R)

,

where Γ ⊂ Φ+ ∪ {0} is the semigroup of the values taken on elements of R \ {0}

by the valuation ν with value group Φ.

The first basic fact is

Proposition 5.1 If ν is a rational valuation of the noetherian ring local R, the

associated graded ring can be presented as a quotient of a polynomial ring in

countably many variables by a binomial ideal:

grνR = k[(Ui)i∈I ]/(Um − λmnUn)m,n∈E .

Now one can associate to (R, ν) a valuation algebra

Aν(R) =
⊕

φ∈Φ

Pφ(R)v−φ ⊂ R[vΦ],

where R[vΦ] is the group algebra of Φ with coefficients in R.

If R contains a field k such that the valuation takes the value 0 on k∗, we

have a natural composed map

k[vΦ+ ]→ R[vΦ+ ]→ Aν(R),

corresponding to a map of schemes

SpecAν(R)→ Spec k[vΦ+ ].

And the second basic fact is:

Proposition 5.2 If in addition the ring R contains a field of representatives,

the k[vΦ+ ]-algebra Aν(R) is faithfully flat, the general fiber of the corresponding

map of schemes is isomorphic to Spec R and its special fiber is Spec grνR.

By a result of Piltant, the Krull dimension of Spec grνR is the rational rank

of the group Φ of the valuation, and by Abhyankar’s inequality, we have for a

rational valuation

dimgrνR ≤ dimR.
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Strict inequality can occur, as we saw in example 2. This example displays a

faithfully flat family of schemes in which the dimension of the special fiber is

less than the dimension of the general fiber. There is no contradiction with

the semicontinuity in the other direction of fiber dimensions which is usual in

algebraic geometry, because the finiteness assumptions under which that result

is proved are not satisfied here.

Using the properties of flatness, one can deduce from this a valuative version

of Cohen’s theorem :

Theorem 5.3 If the noetherian local ring R is complete and equicharacteristic,

given a field of representatives k ⊂ R and elements ξi ∈ R whose initial forms

x̄ii generate the k-algebra grνR, the surjective map of k-algebras

k[(Ui)i∈I ]→ grνR

of the first proposition, mapping Ui to ξ̄i, extends to a continous surjective map

of k − algebras

k[(̂ui)i∈I ]→ R

mapping ui to ξi ∈ R, and such that the associated graded map with respect to

the natural filtrations coincides with the first map.

Here the hat means a scalewise completion taking into account the structure

of the group Φ of the valuation. The natural filtration on the first ring is the

filtration by the weight, with weight(ui)=γi.

Moreover the kernel of the second map is generated, up to closure, by equations

which are deformations of the binomial equations Um − λmnUn generating the

kernel of the first map. They are of the form

Fmn = um − λmnun +
∑

p

cpu
p,

with cp ∈ k∗, w(up) > w(um) = w(un), and w is the monomial weight giving to

ui the weight γi = ν(ξi) ∈ Γ.

More precisely, taking the trivial character χ: Φ→ k∗ mapping φ to 1, a suitable

scalewise completion of the valuation algebra is isomorphic to a quotient

k[vΦ+ ] ̂[(ui)i∈I ]/((F̃mn)m,n),

17

, there exist

and such that



where the bar denotes the topological closure, F̃mn = um−λmnun+
∑

p c̃p(vφ)up

and the c̃p(vφ) are in k[vΦ+ ], with c̃p(0) = 0, and finally the series obtained by

replacing all vφ by 1 ∈ k∗ is Fmn. Now, because R is noetherian, its maximal

ideal is generated by finitely many of the ξi and any variable uj not in that

finite set must appear linearly in one of the equations Fmn. In fact, modulo an

implicit function theorem whose proof is not yet written in full, one can prove

that all the equations Fmn except finitely many must be of the form

Fi = un(i) − λiu
m(i) + ciui+1 +

∑

p

c(i)
p up,

where This begins to look a lot like our second example. It suffices to resolve

the toric variety defined by finitely many binomials which do not appear in the

Fi, this will resolve, and all the Fi add nothing: it is just a graph.

This reduces us to the case where the graded k-algebra grνR is finitely gen-

erated: one proves that an irreducible binomial variety over an algebraically

closed field of any characteristic has embedded resolutions by toric maps (joint

work with P.González Pérez), and then that the same toric map also resolves the

space defined by the deformed equations at the point picked by the valuation

provided one deforms by adding terms of higher weight.

Then there is the difficulty of reducing the excellent equicharacteristic case

to the complete case. This is not entirely settled yet, although there is a precise

program to deal with it.

⋆
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