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Abstract. The set of alternate duals of a given frame X = {xj}j∈J in

a Hilbert space H carries a natural structure of affine space whose base
point is the canonical dual of X. We describe this structure in terms of
bounded linear idempotents of B(l2(J)).

1. Introduction

Let us fix throughout the whole paper a separable Hilbert space H and a
countable set J. Now let X = {xj}j∈J be a family of vectors in H indexed by
J. By definition X is called a frame if there exist two positive constants A,B

such that

A‖x‖2 ≤
∑

j∈J

|〈x, xj〉|
2 ≤ B‖x‖2

for all x in H. Besides, the family X allows to define a linear operator

θX : x 7−→ (〈x, xj〉)j∈J

from H into the set of scalar sequences indexed by J.
We observe that X is a frame if and only if the so-called analysis operator

θX is a bounded linear operator from X onto a closed subspace of l2(J) and
if the adjoint

θ∗X : l2(J) −→ H

is surjective. Moreover, if we denote {ej}j∈J the canonical orthonormal basis
of l2(J), we have

xj = θ∗Xej

for all j in J.
Thus there is a natural bijection between the set of frames in H indexed by

J and the set of bounded linear operators from H onto a closed subspace of
l2(J) whose adjoints are surjective. In the remainder of this paper, the letters
X and Y shall always stand for such frames.

In addition to this correspondence, it proves convenient to introduce the
projection

pX : l2(J) −→ Im θX ⊂ l2(J)
1
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onto the range of θX along Ker θ∗X . It is worth noticing that these two oper-
ators are related by the formula

pX = θX(θ∗XθX)−1θ∗X

where the invertibility of θ∗XθX , the frame operator, is guaranteed by the fact
that X is a frame. As observed in [2, p. 11], a frame X is a Riesz basis if and
only if its synthesis operator θ∗X is injective or, equivalently, if pX = 1.

We now come to the objective of this note, which is to investigate the
notion of duality between frames. Since we work with their associated oper-
ators rather than with the frames themselves, we will take as a definition the
characterization exhibited in [2, Proposition 1.17]:

Definition 1.1. A frame Y is called an alternate dual of the frame X if
θ∗Y θX = 1.

First note that this defines an equivalence relation on the set of frames.
Then take a frame X and observe that the operator θ := θX(θ∗XθX)−1 is
bounded with closed range Im θ = Im θX and with surjective adjoint θ∗ =
(θ∗XθX)−1θ∗X . By the correspondence above, there exists a unique frame X ′

which admits θ as its analysis operator. It turns out that X ′ is nothing but
the canonical dual of X (see [2] Section 1.2), which is therefore characterized
by the following identity:

θX′ = θX(θ∗XθX)−1.

It can be shown that the set of alternate duals of X corresponds to the
following affine subspace of B(H, l2(J)), the set of bounded linear operators
from H to l2(J):

θX′ + Ker {φ 7−→ φ∗θX}.

But the purpose of this study is to establish a correspondence between alter-
nate duals of X and certain idempotents in the algebra B(l2(J)) of bounded
linear operators on l2(J). We recall that an element p in B(l2(J)) is called an
idempotent if p2 = p and that it is called a projection if p2 = p = p∗.

The key point in this note is the fact that Y is an alternate dual of X if
and only if θXθ∗Y is an idempotent (Proposition 3.2).

But this statement can be made more precise. Namely, the latter corre-
spondence provides us with a moduli space for the set of alternate duals of
X.

Let us first introduce a notation from [1].

Definition 1.2. For any idempotent p in B(l2(J)), we denote

Fp := p + pB(l2(J))(1 − p)

the affine subspace of B(l2(J)) made of all idempotents in B(l2(J)) whose
range is equal to the range of p.



ON ALTERNATE DUAL FRAMES 3

We let the reader check the assertion contained in this definition (see [1,
Lemma 4.1] if needed).

The main result of this note is that the mapping Y 7−→ θXθ∗Y is a bijection
from the set of alternate duals of X onto FpX

(Theorem 3.3).
Note that pX is the only projection in the latter and that it corresponds

to the canonical dual X ′ of X. It is well-known that X ′is the only alternate
dual of X if and only if X is a Riesz basis (cf. [2, Corollary 2.26]). We note in
Corollary 3.4 that this is a straightforward consequence of the latter descrip-
tion.

In Section 2 we establish two preliminary lemmas which are meant to isolate
as much as possible of what is independent from frame theory here. Then
Section 3 is devoted to the proof of the results mentioned above. And finally
in Section 4, we use this viewpoint to give a quantitative approach of the
following questions: when Y is not an alternate dual of X, how far is it from
being so?
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ing us to the Frame Theory and for raising the question which initiated this
work. We also thank Ngua Nguyen and David Kerr for their interest in the de-
velopments of these results. The second author is grateful to Romain Tessera
for fruitful conversations on this topic.

2. Preliminaries

Here we prove two lemmas which are fairly general. They could obviously
be stated for operators between, say, Banach spaces. But for the sake of this
paper, we only need to work with S, T bounded linear operators from H to
l2(J).

Lemma 2.1. If S∗T = 1 then both S and T have closed range and a surjective
adjoint.

Proof. First observe that S∗T = 1 implies trivially the surjectivity of S∗.
Next assume y lies in the closure of Im T and take Txn → y. Then applying
S∗, we find that xn = S∗Txn → S∗y. Hence Txn → TS∗y so y = TS∗y

belongs to Im T . This proves that T has closed range. Now observe that
T ∗S = (S∗T )∗ = 1, so that the preceding conclusions also apply to T and S

in the reverse order. �

Lemma 2.2. The identity S∗T = 1 holds if and only if the following three
conditions hold:

(i) S∗ is surjective;
(ii) T is injective;
(iii) TS∗ is idempotent.
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Proof. Assume S∗T = 1 first. As observed in the proof above, it follows
readily that both S∗ and T ∗ are surjective. Now recall Ker T = (Im T ∗)⊥ =
{0}, so that in particular the surjectivity of T ∗ implies (ii). Property (iii)
follows from a straightforward computation.
Conversely, assume that the three conditions are fulfilled. Then set p := S∗T

and q := TS∗. It follows from (i) that Im q = Im T . So in particular by (iii),
q is equal to the identity on Im T , i.e. T = qT . On the other hand, we have
qT = TS∗T = Tp so that T (1− p) = 0. We conclude from (ii) that 1− p = 0,
i.e. S∗T = 1. �

3. Alternate duals and idempotents

We will now draw some consequences which are more specific to frames.
First we observe that the duality condition with respect to a frame X can

be satisfied by nothing but operators which automatically fall in the class of
analysis operators for frames.

Proposition 3.1. Let X be a frame and let S : H −→ l2(J)) be a bounded
linear operator. It S∗θX = 1, then there exists a unique frame Y such that
S = θY . Moreover, Y is an alternate dual of X.

Proof. This follows essentially from Lemma 2.1, via the correspondence ex-
hibited in the introduction. �

Here is now the key observation.

Proposition 3.2. Let X and Y be two frames. Then Y is an alternate dual
of X if and only if θXθ∗Y is an idempotent of B(l2(J)).

Proof. Since X are Y are frames, we know that θ∗X and θ∗Y are surjective.
And since Ker θX = (Im θ∗X)⊥, we also have in particular that θX is injective.
Thus the result is nothing but Lemma 2.2 applied to θY and θX . �

More precisely, we have:

Theorem 3.3. The mapping Y 7−→ θXθ∗Y is a bijection from the set of alter-
nate duals of X onto FpX

= pX + pXB(l2(J))(1 − pX).

Proof. Let Y be an alternate dual of X, so that q := θXθ∗Y is an idempotent
by straightforward computation. Also Im q = Im θX by surjectivity of θ∗Y .
Since Im θX = Im pX , it follows from Definition 1.2 that q belongs to FpX

.
Thus the mapping under consideration does take its values FpX

.
Now let q be an idempotent in FpX

and set S := q∗θX(θ∗XθX)−1. This defines
a bounded operator S : H −→ l2(J) which satisfies θXS∗ = pXq and S∗θX =
(θ∗XθX)−1θ∗xqθX by definition of S and pX . Since Im q = Im pX = Im θX , we
have pXq = q and qθX = θX . Hence θXS∗ = q and S∗θX = 1. By Proposition
3.1, there exists a unique frame Y such that θY = S. Then Y is an alternate
dual of X which is mapped onto θXθ∗Y = q. The proof is complete.
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�

Corollary 3.4. The canonical dual X ′ is the only dual of X if and only if X

is a Riesz basis.

Proof. Since X is a frame, it appears that pX is necessarily nonzero and
therefore the subspace pXB(l2(J))(1−pX) is equal to {0} if and only if pX = 1.
So the first assertion is equivalent to pX = 1 by Theorem 3.3. As observed in
the introduction, the latter condition is equivalent to the second assertion. �

4. Application

We recall from [1] that given two idempotents p, q, we denote k(p, q), if it
exists, the idempotent k which is determined by Im k = Im p and Ker k =
Ker q.

Assume that Y is an alternate dual of X. Then we have four idempotents
pX , pY , θXθ∗Y and θY θ∗X whose ranges and nullspaces are intertwined in a way
which can be recorded in the following diagram, according to the conventions
introduced in [1]:

pX

θXθ∗Y

pY

θY θ∗X

This reads as follows: pX and θXθ∗Y (respectively pX and θY θ∗X) share the
same range (respectively nullspace), like θY θ∗X and pY (respectively θXθ∗Y and
pY ) do.

In other terms k(pX , pY ) and k(pY , pX) exist, and that they are given in
this case by the formulas k(pX , pY ) = θXθ∗Y and k(pY , pX) = θY θ∗X .

But k(pX , pY ) and k(pY , pX) exist in general, even when Y is not an al-
ternate dual of X. This relies essentially on the fact that pX and pY are two
projections, and not only idempotents. In particular, the so-called Kovarik
formula k(pX , pY ) = pX(pX + pY − 1)−2pY holds for every frames X, Y . We
refer to [1] for a detailed proof of these statements.

We deduce from this discussion that Proposition 3.2 can be restated as
follows:

Proposition 4.1. Let X, Y be two frames. Then Y is an alternate dual for
X if and only if θXθ∗Y = pX(pX + pY − 1)−2pY .
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As a conclusion, we point out that the quantity

‖θXθ∗Y − pX(pX + pY − 1)−2pY ‖

could measure how far Y is from being an alternate dual of X.
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